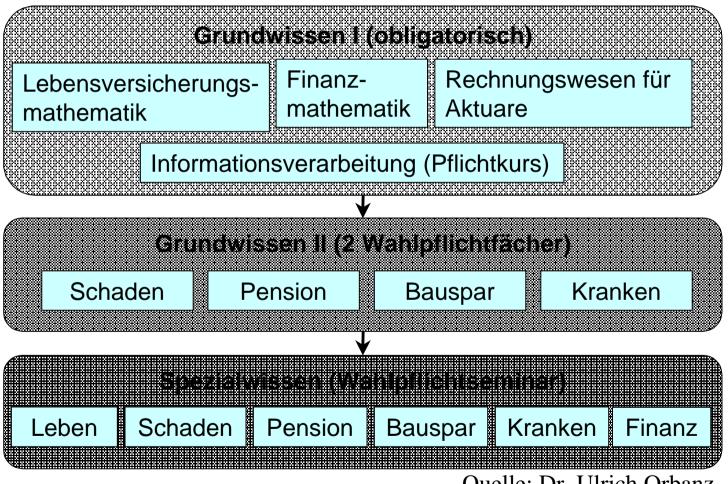
Reform der Ausbildung zum Aktuar in der Bundesrepublik Deutschland

Aktueller Stand –

Übersicht

- I. Aktuelles Ausbildungssystem
- II. Vorgaben der IAA und der Groupe Consultatif
- III. Grobstruktur der neuen DAV-Ausbildung
- IV. Aktueller Stand der Arbeiten
- V. Offene Fragen

Aktuelles Ausbildungssystem (1)


Theoretische Vorbildung:

- abgeschlossene mathematische Ausbildung an einer Hochschule in Deutschland:
 - Diplom-(Wirtschafts-)Mathematiker
 - Diplom-Physiker
 - Staatsexamen Mathematik Sek. II

Aktuelles Ausbildungssystem (2)

- Antrag auf Gleichstellung anderer (auch ausländischer) Studienabschlüsse möglich
- Ansonsten: Mathematische Eingangsprüfung

Aktuelles Ausbildungssystem (3)

Quelle: Dr. Ulrich Orbanz

Aktuelles Ausbildungssystem (4)

Prüfungsanforderungen:

- insgesamt 6 Prüfungsklausuren:
 - > in den drei Pflichtfächern Grundwissen I
 - in den zwei Wahlpflichtfächern Grundwissen II
 - im Wahlpflichtfach Spezialwissen

Aktuelles Ausbildungssystem (5)

Lehrformen:

- a) Grundwissen
 - Repetitorien
 - Kurse
 - teilweise Fernlehrgänge
- b) Spezialwissen
 - Seminare
- c) Selbststudium

Aktuelles Ausbildungssystem (6)

Berufspraxis:

8 Jahre Berufspraxis im aktuariellen Bereich; angerechnet werden aus der math. Hochschulausbildung

- 5 Jahre bei Uni-/TH-Absolventen
- 4 Jahre bei FH-Absolventen
- 3 Jahre bei Bachelor-Absolventen
- 2 Jahre bei Personen ohne math. Hochschulabschluss

Vorgaben der IAA und der Groupe Consultatif (1)

I. IAA Education Syllabus

- 1. Financial mathematics
- Introduction to asset types and securities markets
- Interest yield and other financial calculations
- Investment risk, introduction to stochastic interest and discount
- market models e.g. term structure of interest rates and cashflow models

Vorgaben der IAA und der Groupe Consultatif (2)

- 2. Probability and mathematical statistics
- 3. Economics

4. Accounting

Vorgaben der IAA und der Groupe Consultatif (3)

- 5. Modelling
- model structures
- selection process
- calibration
- validation
- scenario setting
- sensivity testing
- limitations

Vorgaben der IAA und der Groupe Consultatif (4)

6. Statistical methods

- 7. Actuarial mathematics
- actuarial mathematics as applied life insurance, pensions, healthcare and general insurance
- types of products and plans individual groupe and social insurance arrangements

Vorgaben der IAA und der Groupe Consultatif (5)

- pricing of financing methods of products and plans
- reserving
- reinsurance
- 8. Investment and asset management
- The objectives of institutional and individual investors

Vorgaben der IAA und der Groupe Consultatif (6)

- types of investment (bonds, shares, property and derivatives)
- regulation and taxation of investments
- valuation of investments
- portfolio selection
- incorporating assessment of relative value
- portfolio management

Vorgaben der IAA und der Groupe Consultatif (7)

9. Principles of actuarial management topics

10. Professionalism

Vorgaben der IAA und der Groupe Consultatif (8)

II. Core Syllabus der Groupe Consultatif

Stufe 0: Preliminary stage

- 1. Mathematics
- 2. Probability and statistics
- 3. Stochastic processes
- 4. Computing

Vorgaben der IAA und der Groupe Consultatif (9)

- 5. Economics
- 6. Accounting and financial reports
- 7. Structures and legislative instruments of the European Union
- 8. Communication skills
- 9. Language skills

Vorgaben der IAA und der Groupe Consultatif (10)

Stufe I: Actuarial foundation stage

- 10. Financial mathematics
- 11. Survival models
- 12. Actuarial mathematics
- 13. Risk mathematics
- 14. Investment

Vorgaben der IAA und der Groupe Consultatif (11)

Stufe II: Generalized applications stage

- 15. Life insurance
- 16. General insurance
- 17. Pensions
- 18. Living benefits

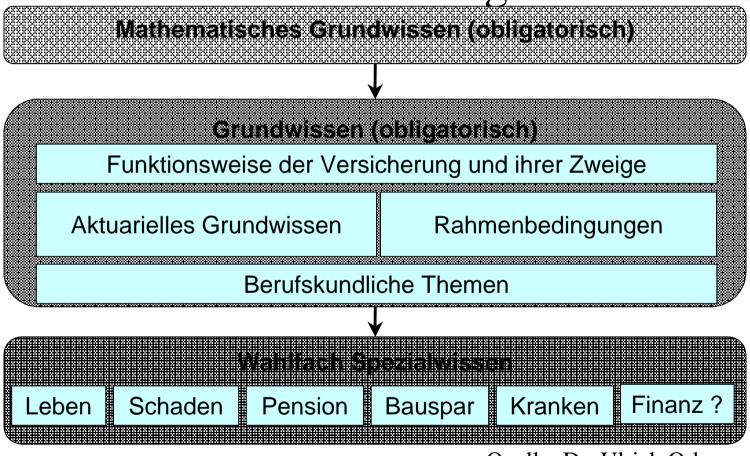
Vorgaben der IAA und der Groupe Consultatif (12)

Stufe III: Country specific and specialist stage

Insbesondere sollen – unter Berücksichtigung länderspezifischer Besonderheiten – die folgenden Punkte vertieft werden:

- financial mathematics
- survival models and simple applications
- life insurance
- pensions

Vorgaben der IAA und der Groupe Consultatif (13)


Zeitvorgabe:

Die Umsetzung des IAA Education Syllabus soll bis Ende 2005 erfolgen, das bedeutet für die DAV, dass das neue System ab dem 01.01.2006 in Kraft treten soll.

Weitere Vorgabe:

Die Mitgliedschaft der DAV in der IAA ist gebunden an die Umsetzung dieses Kanons.

Grobstruktur der neuen DAV-Ausbildung

Quelle: Dr. Ulrich Orbanz

Aktueller Stand der Arbeiten (1)

DAV Prüfungsausschuss (Vors. Dr. Ulrich Orbanz)

Dr. Gerald Sußmann

Prof. Dr. Jürgen Strobel

Grundwissen A

- •Modellierung/Control Cycle
- •Stat. Methoden/Risikotheorie
- •Personenvers.-Math.
- •Schadenvers.-Math.
- •Finanzmathematik
- •Informationsverarbeitung

Grundwissen B

- Propädeutikum
- •Rechnungslegung
- •Rechtskunde
- Solvabilität
- •Economics
- Berufskunde

Aktueller Stand der Arbeiten (2)

- Personenvers.-math.
 (Prof. Dr. Neuburger)
- Schadenvers.-math. (Prof. Dr.Radtke)
- Finanzmathematik (Prof. Dr. Albrecht)
- Modellierung (Herr Schepers)
- Statistische Methoden (Prof. Dr. Sandor)
- IT (Dr. Karnarski)

- Propädeutikum (Dr. Oecking)
- Rechtskunde (Dr. Balleer)
- Rechnungslegung (Dr. Oecking)
- Economics (Prof. Dr. Schradin)
- Solvabilität
 (Dr. Kriele)
- Berufskunde (Herr Klein)

Aktueller Stand der Arbeiten (3)

Zeitplanung

Grundwissen A

07.10.2004: Auftaktsitzung

10.02.2005:

Zusammenführung der ersten Ergebnisse der Unterarbeitsgruppen (siehe unten)

Mai 2005: Fertigstellung

Grundwissen B

11.01.2005: Auftaktsitzung

Juli 2005: Fertigstellung

Aktueller Stand der Arbeiten (4)

Erste inhaltliche Vorschläge der Unterarbeitsgruppen zum Grundwissen A

Statistische Methoden / Risikotheorie

- I Stochastische Risikomodellierung
- 1. Erweiterung der Verteilungsmodelle
- 2. Risikomessung
- 3. Modelle
- 4. Monte Carlo-Simulation

Aktueller Stand der Arbeiten (5)

II Statistische Methoden

- 1. Datenanalyse
- 2. Punktschätzungen
- 3. Bayes (credibility)
- 4. Hypothesentests für nicht normalverteilte Größen
- 5. Lineare und verallgemeinerte lineare Modelle
- 6. Biometrische Rechnungsgrundlagen
- 7. Zeitreihenanalyse
- 8. Data mining

Aktueller Stand der Arbeiten (6)

Finanzmathematik

Die detaillierte Gliederung wird in Kürze vorgelegt. Darüber hinaus besteht Einigkeit über folgende Punkte:

 Die nicht primär aktuariellen Inhalte werden in das Grundwissen B verlagert (z.B. Beschreibung der Kapitalanlageformen, Kapitalanlagevorschriften, etc.)

Aktueller Stand der Arbeiten (7)

- Die Bewertung von Zahlungsströmen, sowohl im Investmentbereich als auch im aktuariellen Bereich, werden in allgemeiner Form behandelt
- Insoweit behandelt dieses Fach auch wesentliche Aspekte von IFRS/Solvency II.

Aktueller Stand der Arbeiten (8)

Personenversicherungsmathematik

Die detaillierte Gliederung wird in Kürze vorgelegt. Einigkeit besteht darüber, dass die Personenversicherungsmathematik im Grundwissen A in vier Teilgebiete gegliedert wird:

Aktueller Stand der Arbeiten (9)

- 1. Allgemeine, für alle Personensparten relevante Grundlagen (z.B. stochastische Modellierung der Lebensdauer, Ausscheide- und Verbleibswahrscheinlichkeiten)
- 2. Lebensversicherungsmathematik
- 3. Krankenversicherungsmathematik
- 4. Pensionsversicherungsmathematik

Aktueller Stand der Arbeiten (10)

Schadenversicherungsmathematik

- 1. Schadenverteilungen
- 2. Risikomodelle
- 3. Tarifierung
- 4. Reservierung
- 5. Rückversicherung und Risikoteilung

Aktueller Stand der Arbeiten (11)

Modellierung / Control Cycle

- 1. Einführung (z.B. Definition und Abgrenzung des Modellbegriffs, Zweck und Grenzen von Modellen, Hierarchie von Modellen, Unternehmensmodelle für Leben- und Schadenversicherer als Beispiele)
- 2. Der Modellierungsprozess (Control Cycle)
- 3. Einsatz von Modellen in VU
- 4. Anwendungen: Unternehmensmodelle

Aktueller Stand der Arbeiten (12)

Informationsverarbeitung im VU

- 1. Überblick, Geschäftsprozesse und Anwendungssysteme
- 2. Fachliche Modellierungen
- 3. Technische Umsetzung
- 4. Durchführung von Projekten
- 5. Zusammenfassung und Ausblick

Aktueller Stand der Arbeiten (13)

Zusammenfassung (1)

- o Der bisherige Prüfungsstoff bleibt im wesentlichen erhalten.
- o Ergänzung um spartenübergreifende Themenblöcke
- o stärkere Beachtung der Risiken aus der Versicherungstechnik und der Kapitalanlage

Aktueller Stand der Arbeiten (14)

Zusammenfassung (2)

- o größere Bedeutung stochastischer Methoden
- o klare Trennung des aktuariellen Grundwissens von den rechtlichen bzw. ökonomischen Rahmenbedingungen
- o tendenziell umfangreicherer Prüfungsstoff

Offene Fragen

- 1. Strukturierung des Prüfungssystems
- 2. Gliederung des Gesamtlehrstoffs in Kurse, Seminare, Repetitorien und Fernlehrgänge
- 3. Übergangsregelungen