

Inflation! Ein Risiko? – Bericht aus der Schaden-/Unfallversicherung Vortrag qx-Club, 05.08.2014

Dr. Marcel Wiedemann, Aktuariat Komposit, HUK-COBURG

Inhalt

1 Einleitung
2 Risiken in der Schaden-/Unfallversicherung
3 Inflationsrisiko
4 Roadmap Inflationsrisiko
5 Inflationserwartung
6 Stochastische Inflationsmodellierung
7 Fazit

Zur Person


- Dr. Marcel Wiedemann, Aktuar DAV
- Gruppenleiter Aktuarielles Controlling, HUK-COBURG
- Zuständig für aktuarielle Schadenreservierung, interne Modellierung und Unternehmensplanung/-steuerung
- Mitglied des ALM-Komitees
- Mitarbeit in GDV und DAV-Arbeitskreisen
- Studium der Mathematik in Dresden und Leeds (U.K.)
- Promotion an der University of Leeds über Darstellungstheorie von Algebren "On Real Root Representations of Quivers"
- Assistent an der Universität Paderborn
- Hobbies: SNOOKER!

Hintergrund

Ergebnisse der DAV-Arbeitsgruppe "Zins und Inflation in der Schadenversicherung"

Autoren

- Dr. Daniel John, HUK-COBURG (Leitung)
- Mina Averbach, Volkswagen Versicherungsdienst
- Kristina Baganz, Directline
- Harald Bredl, Swiss Re
- Sami Demir, Partner Re
- Dr. Heinz-Jürgen Klemmt, GenRe
- Dr. Matthias Land, Gothaer
- Philipp Maier, Versicherungskammer Bayern
- Susanne Plümacher, HUK-COBURG
- Dr. Jürgen Reinhart, Münchner Rück
- Karsten Wantia, Towers Watson.

Aktuelle Projektarbeit im Aktuariat Komposit der HUK-COBURG

Inhalt

1 Einleitung
2 Risiken in der Schaden-/Unfallversicherung
3 Inflationsrisiko
4 Roadmap Inflationsrisiko
5 Inflationserwartung
6 Stochastische Inflationsmodellierung
7 Fazit

Risiken in der Schaden-/Unfallversicherung

§ 101 VAG-Novelle

- Schwankungen in Bezug auf das Eintreten, die Häufigkeit und die Schwere der versicherten Ereignisse und in Bezug auf die Dauer und den Betrag der Schadenabwicklung (Nichtlebensversicherungsprämienrisiko und reserverisiko) sowie
- 2. einer wesentlichen Ungewissheit in Bezug auf die Preisfestlegung und die Annahmen bei der Bildung der versicherungstechnischen Rückstellungen für extreme oder außergewöhnliche Ereignisse (Nichtlebenskatastrophenrisiko).

Prämienrisiko

Katastrophenrisiko

Reserverisiko

Extremereignis Wiehltalbrücke

- Am 26. August 2004 stürzte nach einer Kollision mit einem BMW ein mit 32.000 Litern Kraftstoff beladener Tanklastwagen von der Brücke und geriet in Brand. Der LKW-Fahrer kam dabei ums Leben. Durch das Feuer wurden Teile der Brücke so stark beschädigt, dass sie wegen mangelnder Tragfähigkeit gesperrt werden musste. Der zum Unfallzeitpunkt 26-Jährige, unter Drogeneinfluss stehende Verursacher hatte keinen Führerschein. Er wurde zu 22 Monaten Haft verurteilt.
- Die Schadenhöhe wurde 2004 mit 30 Mio. €eingeschätzt
 der damals bislang größte Kraftfahrthaftpflichtschaden
 Deutschlands.
- Der BMW war bei der Asstel versichert, deren Eigenkapital im Jahr 2004 bei 9,92 Mio. € lag.
- Ohne Rückversicherung wäre dies das Ende der Asstel gewesen.
- Die Münchner Rück als betroffener Rückversicherer entwickelte ganz neue Techniken zur Reparatur der Brücke.
 Der Schaden wurde so abschließend mit 7 Mio. € reguliert.

Quelle: http://de.wikipedia.org/wiki/Wiehltalbr%C3%BCcke

Extremereignis Müllabfuhr versus ICE, 2010



- Müllwagenfahrer versucht auf einer schmalen Anliegerstraße einem anderen Fahrzeug auszuweichen und rutscht dabei die Böschung hinab.
- Direkt in den heranrasenden ICE
- Müllwagenfahrer schwer verletzt, 14 weitere
 Personen leicht verletzt
- ICE entgleist und aufgeschlitzt
- ICE-Strecke längere Zeit wegen Bergung gesperrt.
- Nutzungsausfall durch langwierige Reparatur.
- Aufwand: 45 Mio. € (Allianz)

Quelle: http://www.spiegel.de/reise/aktuell/0,1518,712266,00.html

Naturkatastrophen am Beispiel Kyrill 2007

Kyrill: Geschätzter volkswirtschaftlicher Gesamtschaden in Europa ca. 10 Mrd. US\$. Davon versichert ca. 5,8 Mrd. US\$ (laut Munich Re).

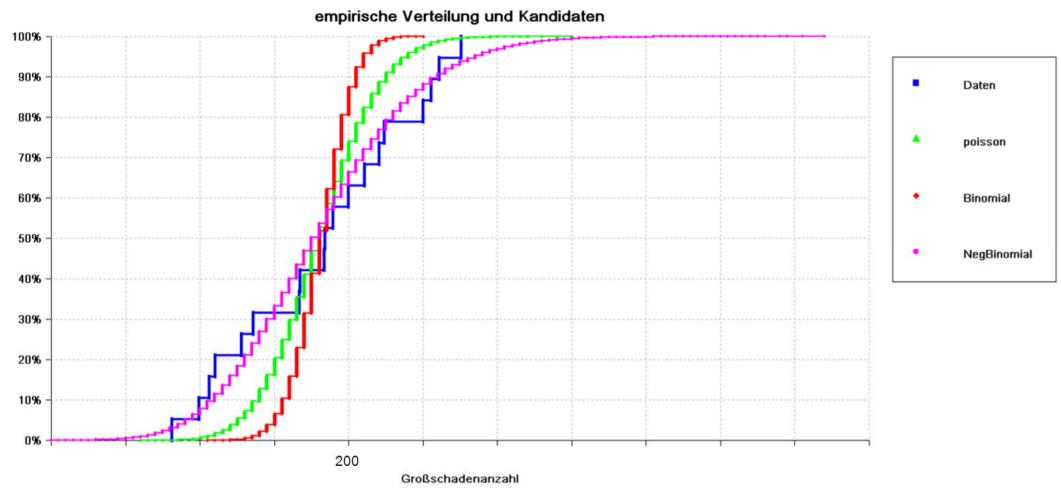
Modellierung Prämien-/Katastrophenrisiko

Bei der Modellierung werden folgende Hauptrisikotreiber separat abgebildet:

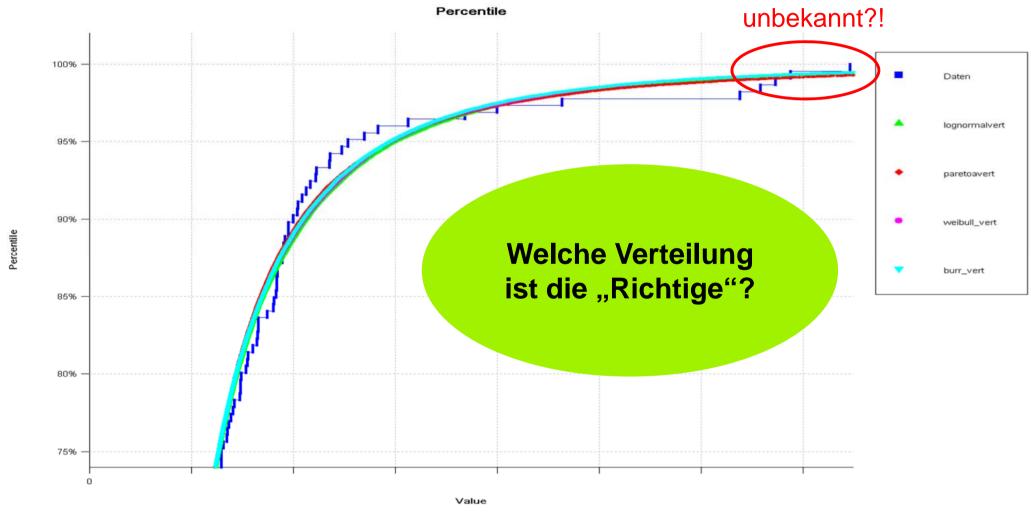
BasisschadenAlle Sparten

Kumulschaden
 Kasko,
 Wohngebäude
 Hausrat

■ Großschaden KH, AH WG, AU



Großschaden – Verteilungsanpassung Schadenanzahl



Verteilungskandidaten: Poisson, Binomial, Negativ Binomial

Großschaden – Verteilungsanpassung Schadenhöhen

Verteilungskandidaten (Gestutzte Verteilungen): Burr, Inverse Burr, Lognormal, Gamma, Cauchy, Exponential, Inverse Gauss, Logistic, LogLogistic, Normal, Weibull, Pareto, LogGamma, ...

Risiken in der Schaden-/Unfallversicherung – Reserverisiko, Großschaden

http://www.chiemgau24.de/bilder/2010/05/08/754033/365305693-unfall-waging.9.ing

http://www.innsalzach24.de/bilder/2010/10/30/984858/304541491-vier-tote-unfall.9.jpg

http://www.hna.de/bilder/2011/02/12/1120694/983222882-schwerer-unfall-battenberg.9.jpg

- Individuelle Schadenfallbewertung durch Schadensachbearbeiter nach Vorsichtsprinzip:
 - Sachschaden
 - Schmerzensgeld
 - Heilbehandlungskosten
 - Arbeitsausfall / Minderverdienst / berufliche Reha
 - Pflege / Haushaltshilfe / vermehrte
 Bedürfnisse
 - Bestattungskosten
 - Unterhalt f
 ür Hinterbliebene
- Sachbearbeiter-Rückstellung (HGB)
 - Fall A: 1 Mio. €
 - Fall B: 2 Mio. €
 - Fall C: 3 Mio. €

Reserverisiko

 Die Abwicklung von Schäden ist mit hohen Risiken hinsichtlich Zeitpunkt als auch Höhe der Zahlungen behaftet: dies ist der Kern des Reserverisikos.

Schadenfall

Einschätzung: 1 Mio. €

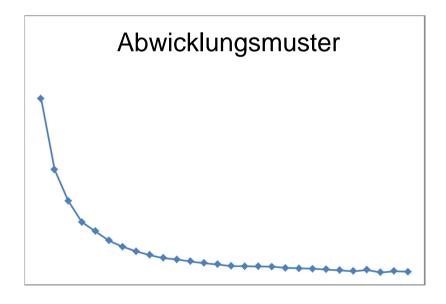
1 Jahr später

Einschätzung: 1,5 Mio. € aufgr. dt. höherer Pflegekosten

2 Jahre später

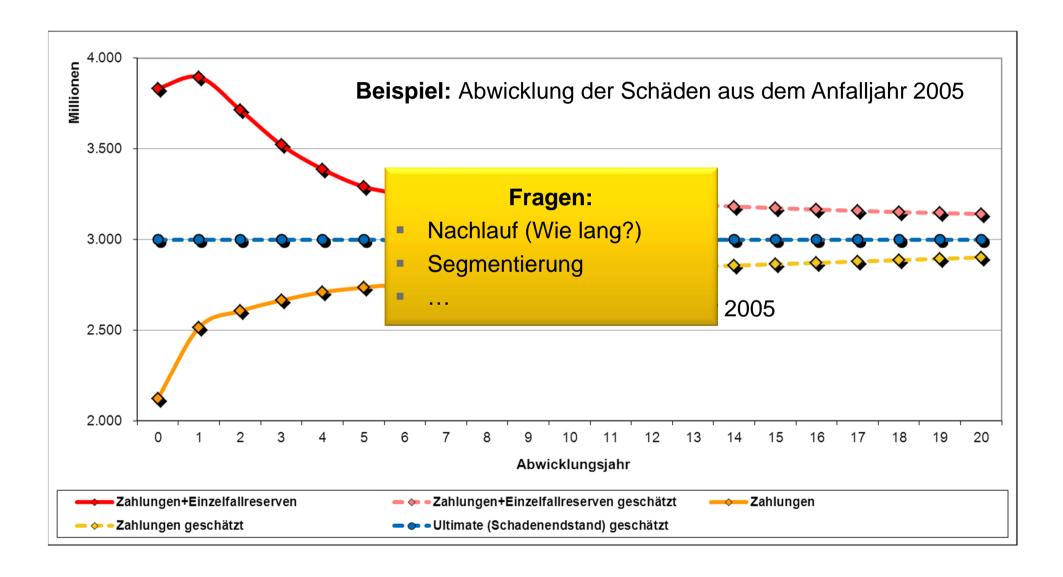
Einschätzung: 2,0 Mio. € aufgr. Dauereinschränkung (Arbeitsausfall, ...)

Abhängig vom Abwicklungszeitpunkt, stellt sich der gleiche anfängliche Schadenfall
oft anders dar.



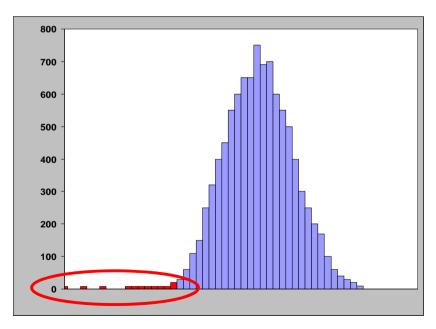
Reserverisiko – aktuarielle Methoden

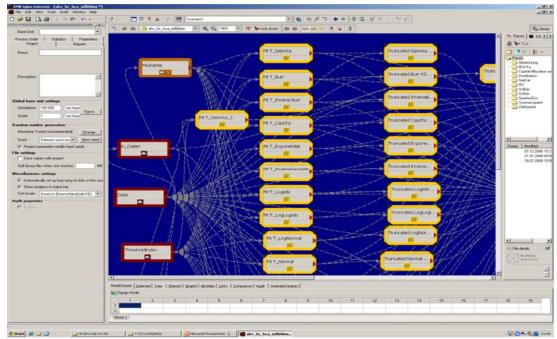
- Die eben beschriebene Rückstellung nach HGB enthält gem. Vorsichtsprinzip Sicherheitszuschläge, ist also im Rahmen einer ökonomischen Bewertung nicht geeignet.
- Zur ökonomischen Bewertung von Schadenrückstellungen gibt es aktuarielle Methoden, wie bspw. das Chain-Ladder-Verfahren.


Acc.	Developr	nent Year	(DY)	
Year	1	k	n+1-i	n
1	C ₁₁	C_{1k}	$C_{1,n+1-i}$	C_{1n}
i	C_{i1}	C_{ik}	$C_{i,n+1\text{-}i}$	
n+1-k	$C_{n+1-k,1}$	$C_{n+1\text{-}k,k}$		
n	C_{n1}			

Chain-Ladder-Verfahren – Ermittlung Best Estimate

Modellierung Reserverisiko

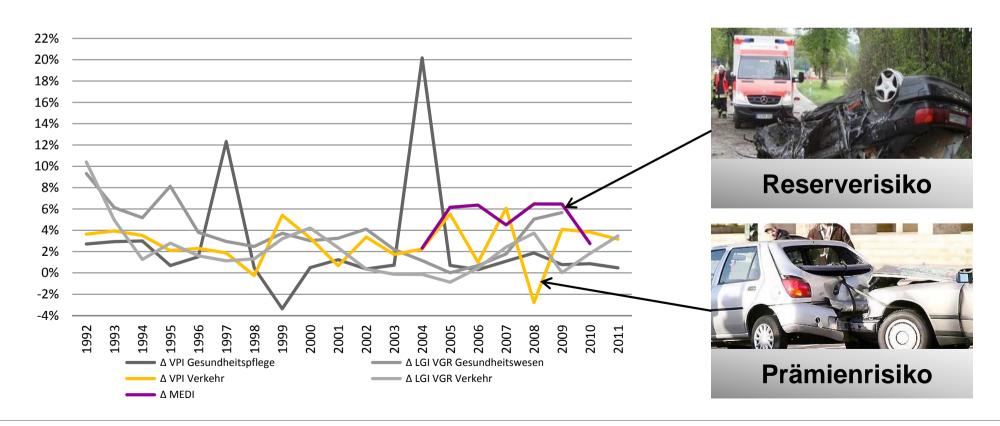

Mittels Bootstrapping-Methoden kann darüber hinaus eine Reserveverteilung erzeugt werden.


Acc.	Developr	nent Year	(DY)			Scaled Res	erves Probability	Density - Total		
Year	1	k	n+1-i	n	0,018 -		\(\frac{1}{\chi_1}\)	=	Probability Density Mean	
1	C ₁₁	C_{1k}	$C_{1,n+1-i}$	C_{1n}	0,014 -		4,	Ē	25th Percentile Median 75th Percentile	
i	C_{i1}	C_{ik}	$C_{i,n+1\text{-}i}$		O 0000 –					
n+1-k	$C_{n+1\text{-}k,1}$	$C_{n+1-k,k}$			0,006	, and a second				
n	C_{n1}				0,000		Reserve	- Advantage		

Zusammenfassung: Stochastische Modellierung des Prämien-/Reserverisikos

 Im Rahmen des internen Modelles werden die Unternehmenscashflows mittels der genannten Modellierung erzeugt.

- Im Ergebnis erhalten wir eine Verteilungsfunktion des versicherungstechnischen Ergebnisses.
- Risikokapital = VaR zum 99,5%-Quantil


Inhalt

Einleitung Risiken in der Schaden-/Unfallversicherung Inflationsrisiko Roadmap Inflationsrisiko Inflationserwartung Stochastische Inflationsmodellierung **Fazit**

Welche Risiken fehlen noch? – Inflationsrisiko!?

- Die vorgestellte Modellierung der versicherungstechnischen Risiken im Schaden-/Unfallbereich entspricht dem "klassischen" Vorgehen.
- Was ist mit dem Risiko steigender Preise?

Welche Risiken fehlen noch? – Inflationsrisiko!?

§ 84 VAG Novelle

Weitere Sachverhalte, die bei der Berechnung der versicherungstechnischen Rückstellungen zu berücksichtigen sind

- (1) Bei der Berechnung der versicherungstechnischen Rückstellungen sind ferner die folgenden Sachverhalte zu berücksichtigen:
 - 1. sämtliche bei der Bedienung der Versicherungsverpflichtungen anfallenden Aufwendungen,
 - 2. die Inflation einschließlich der Inflation der Aufwendungen und der Versicherungsansprüche sowie
 - 3. sämtliche Zahlungen an Versicherungsnehmer und Anspruchsberechtigte, einschließlich künftiger Überschussbeteiligungen, die die Versicherungsunternehmen erwarten vorzunehmen, unabhängig davon, ob sie vertraglich garantiert sind oder nicht.

(2) ...

Inflation? Inflationsrisiko?

Ziel: Verstehen! Schützen!?

Welche Ziele verfolgen wir?

- Gem. aufsichtsrechtlicher Anforderungen, muss man sich mit dem Thema Inflation beschäftigen!
- "Wesentlich" sind jedoch auch die folgenden Aspekte
 - > Unternehmenssteuerung: Wie hoch ist die "Teuerung" meines Portfolios?
 - > Inflationshedging: Wie kann ich mich gegen "Teuerung" schützen?
 - > RV-Optimierung: Was treibt die "Teuerung" meiner Großschäden?
 - **>** ...

Gründe genug, dieses Thema anzugehen ©!

Inhalt

Einleitung Risiken in der Schaden-/Unfallversicherung Inflationsrisiko **Roadmap Inflationsrisiko** Inflationserwartung Stochastische Inflationsmodellierung **Fazit**

Muss man sich wirklich mit Inflation beschäftigen?

Der Aktuar könnte folgender Argumentation "erliegen":

"Da die Inflation bereits in den Daten enthalten ist, wird diese im Rahmen der aktuariellen Methoden implizit fortgeschrieben und ist somit auch implizit berücksichtigt."

Ist diese Argumentation richtig bzw. angemessen?

Fragen über Fragen!?

- "Wieviel" Inflation steckt in den (Schaden-)Daten?
- 2. "Wieviel" Inflation wird mittels aktuarieller Methoden (im Rahmen der Reservierung) fortgeschrieben?
- 3. Welche Inflationserwartung haben wir für die Zukunft?
- 4. Wie modelliert man eine zum Portfolio konsistente zukünftige Inflation?
- 5. Wieviel Risikokapital kosten Inflationsschocks (200-Jahres-Ereignis)?

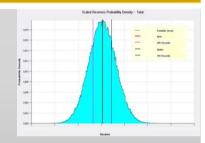
Inflationsrisiko – Roadmap

"Welt der Erwartungswerte"

Modellierung Inflationserwartung

 Bestimmung Schadeninflation und zukünftige Erwartung

Acc.	Developr	ment Year	(DY)	
Year	1	k	n+1-i	n
1	C_{11}	C_{1k}	$C_{1,n+1\text{-}i}$	C_{1n}
i	C_{i1}	C_{ik}	$C_{i,n+1\text{-}i}$	
n+1-k	$C_{n+1-k,1}$	$C_{n+1\text{-}k,k}$		
n	C_{n1}			


schwierig!

- -2. -Bereinigung der Schadendaten-um-Inflation
- 3. Bestimmung Best Estimate (nicht inflationiert)
- 4. Inflationierung der Ergebnisse

"Welt der Stochastik"

Modellierung Inflationsschock

Entwicklung von stoch.
 Inflationsszenarien

- 2. Anwendung auf stochastische Cashflows (Prämien-/Reserverisiko)
- 3. Bestimmung von Risikokapitalbedarfen inkl. Inflationsrisiko

Inhalt

Einleitung Risiken in der Schaden-/Unfallversicherung Inflationsrisiko Roadmap Inflationsrisiko Inflationserwartung Stochastische Inflationsmodellierung **Fazit**

Inflationsbestimmung – Welche "Inflation" steckt in den Schadendaten?

Inflationsbestimmung nach Anfalljahressicht

Rechenbeispiel

Gegeben:

Ist-Dreieck kumulierte Zahlungen					
	0	1	2	3	
0	100	140	160	170	
1	105	142	158		
2	110	152			
3	115				

Ist-Dreieck kumulierte Schadenanzahl						
	0	1	2	3		
0	12	14	15	20		
1	10	11	12			
2	8	9				
3	6					

Anwenden des Chain-Ladder Verfahrens:

Ist-Dreieck kumulierte Zahlungen					
	0	1	2	3	
0	100	140	160	170	
1	105	142	158	168	
2	110	152	171	182	
3	115	158	179	190	

CL	1,38	1,13	1,06	

Ist-Dr	Ist-Dreieck kumulierte Schadenanzahl					
	0	1	2	3		
0	12	14	15	20		
1	10	11	12	16		
2	8	9	10	13		
3	6	7	7	10		
3	6	7	7	10		

CL	1,13	1,08	1,33	

Berechnen des Schadenindex:

Ultimate der kumulierten Zahlungen
170
168
182
190

Zahlungsdurchschnitt
8,50
10,49
14,05
19,39

Ultimate der kumulierten Schadenanzahl
20
16
13
10

Zahlungsdurchschnitt a	ls Index mit Basisjahr 1 = 100
	81,01
1	00,00
1	33,93
1	84,78

Separationsverfahren

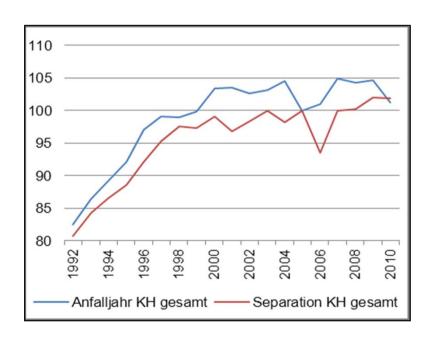
Methodik

Beim Separationsmodell werden folgenden Parameter bestimmt:

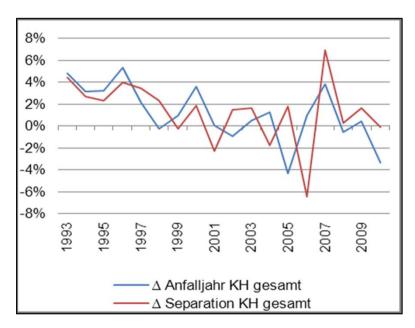
- v_i als Effekt des Anfalljahres i (bekannter Parameter, $v_i = H[N]$, N_i Schadenanzahl des Anfalljahres i)
- λ_{t-k} als Effekt des Kalenderjahres i+k (unbekannter Parameter)
- 9, als Effekt des Abwicklungsjahres (unbekannter Parameter)

mit i,k \in {0,1,..,n}

Dem Modell liegt die Annahme zugrunde, dass

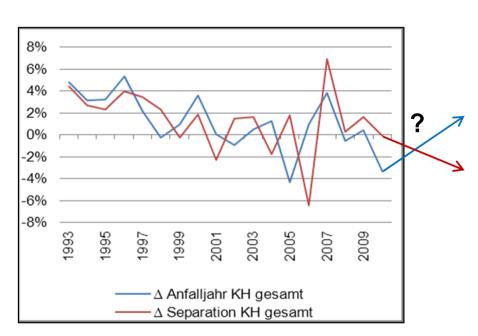

ailt.

Für ein gegebenes Schadendreieck lassen sich die Parameter rekursiv bestimmen (Marginalsummengleichung)



Inflationsbestimmung – Ergebnisse

Index

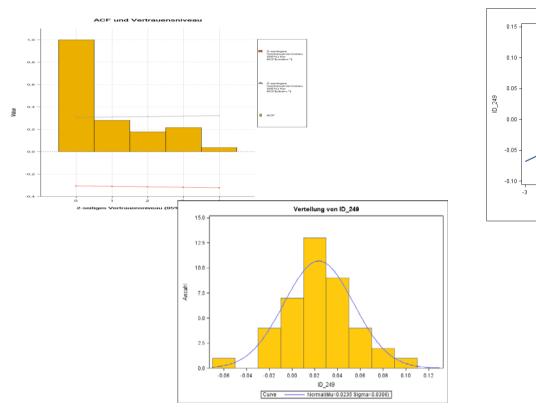

Veränderungsraten

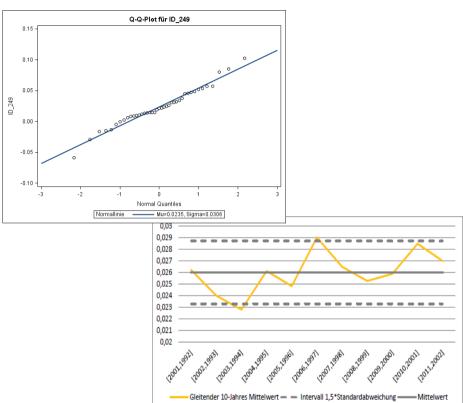
Fazit: Ergebnisse der beiden Methoden sehr ähnlich!

Inflationsvorhersage – Wo geht die Reise hin?

Sachschäden

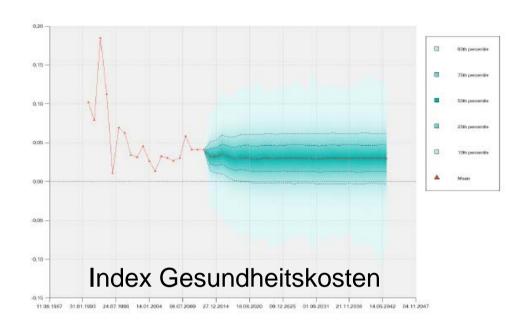
The state of the s


Indizes

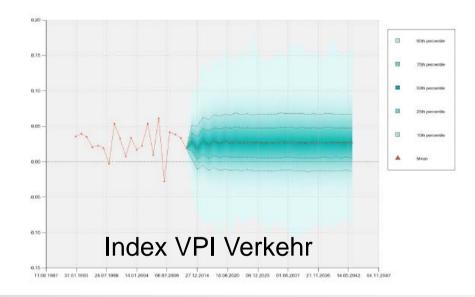

Idee: Erklärende "Variablen" für die hauseigene Inflation finden!

Werkzeuge: Korrelations-/Regressionsanalysen, Signifikanztests, Verteilung, ...

Inflationsvorhersage – Eigenschaften (Sparten-)Inflation

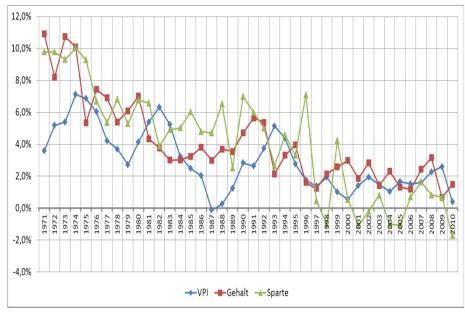


Fazit: Basis für Modellierung gegeben!



Inflationsvorhersage – Wo geht die Reise hin?

Idee: Hieraus Ableitung einer stochastischen Inflationsmodellierung möglich (→später).


Projektion der Komponenten führt zur langfristigen Erwartung der Sparteninflation.

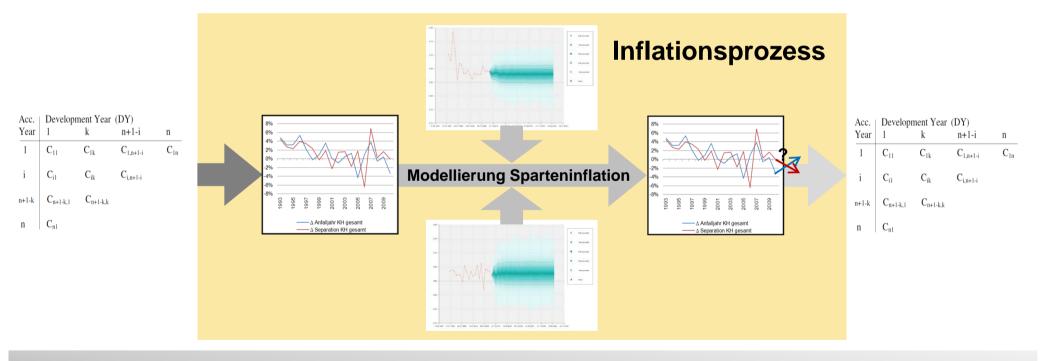
Forderung: Konsistente Modellierung ("Inflationsprozess") zur hausinternen Steuerung! (RV-Pricing, Aktiv-Modellierung, Steuerung, Inflations-Hedging?, …)

Inflationsbereinigung – Schadenreservierung?

Indizes

Ergebnisse mit Inflationsbereinigung

Abwicklung mit Tail		zukünftige Inflation				
			0% p.a.	1% p.a.	2% p.a.	3% p.a.
	Ohne Bereinigung	ohne Bereinigung, normiert (original Chain Ladder)	150.000.000	150.000.000	150.000.000	150.000.000
•	Mit Bereinigung	mit VPI-Bereinigung	124.971.993	139.831.321	158.802.691	183.462.581
		mit Gehaltsindex- Bereinigung	116.990.918	130.185.935	146.922.333	168.534.164
		mit Sparteninflations- Bereinigung	108.087.966	119.946.155	134.975.747	154.377,532
		mit VPI-Bereinigung	-17%	-7%	6%	22%
	Differenz zu ohne	mit Gehaltsindex- Bereinigung	-22%	-13%	-2%	12%
	Bereinigung	mit Sparteninflations- Bereinigung	-28%	-20%	-10%	3%


Welche Annahme ist "richtig"?

Fazit: Inflationsbereinigung nur, wenn man genau weiß, was man tut!

Zusammenfassung – Inflationsprozess

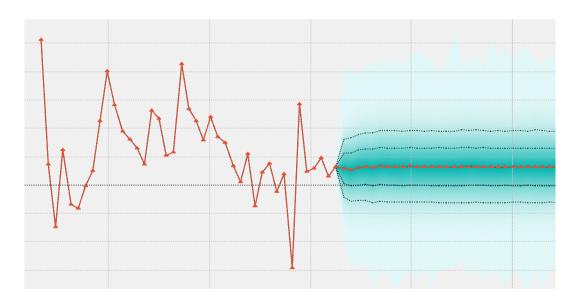
- Viel wesentlicher für die Reservierung ist die zukünftige Inflationserwartung.
- Die Dreiecke sollten wie üblich abgewickelt werden. Hierauf kann die generierte Inflationserwartung (abzüglich Sockel) angewendet werden.

Fazit: Klar und verständlich interpretierbarer Umgang mit dem Thema Inflation.

Inhalt

Einleitung Risiken in der Schaden-/Unfallversicherung Inflationsrisiko Roadmap Inflationsrisiko Inflationserwartung **Stochastische Inflationsmodellierung Fazit**

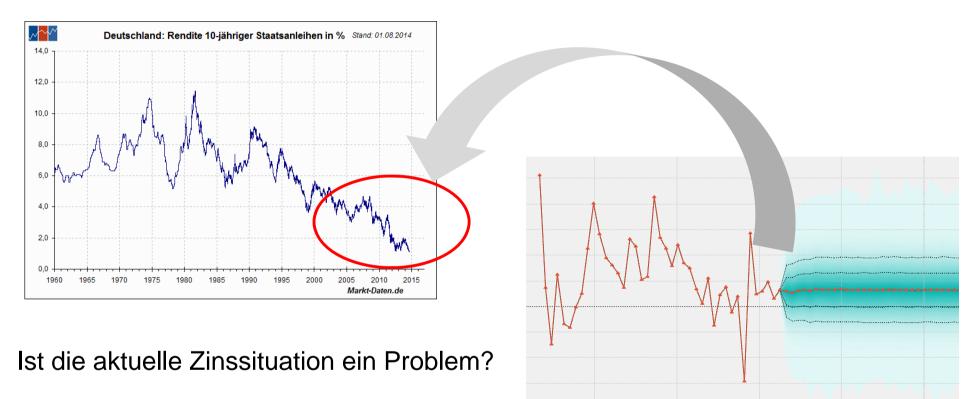
Stochastische Inflationsmodellierung


Modellierung als zeitunabhängiges Modell, dass sowohl autoregressive Prozesse als auch multilineare Regressionen auf andere stochastische Größen zulässt (erklärende Variablen).

$$\mathbf{Y}(t) = \begin{bmatrix} c \\ \text{konstanter} \\ \text{y-Abschnitt} \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{p} \alpha_i * \mathbf{Y}(t-i) \\ \text{Autoregressive} \\ \text{Komponenten} \end{bmatrix} + \begin{bmatrix} \sum_{j=1}^{m} \beta_j * \mathbf{X}_j(t) \\ \text{andere} \\ \text{Kovariablen} \end{bmatrix} + \begin{bmatrix} \sigma * N(0,1) \\ \text{normal-verteilter} \\ \text{Fehlerterm} \end{bmatrix}$$

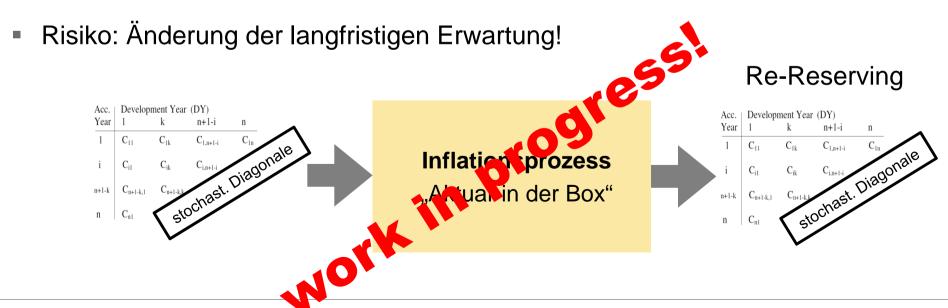
Stochastische Inflationsmodellierung – Ultimatives Risiko

 Mit der stochastisch modellierten Inflation kann das ultimative Inflationsrisiko durch Überlagerung mit den stochastischen Passiv-Cashflows im internen Modell abgebildet werden.


- Auswirkungen sind besonders deutlich im Reserverisiko zu beobachten.
- Inflationsschocks sind kein vernachlässigbares Risiko!

Fazit: Ultimatives Inflationsrisiko nicht vernachlässigbar! **Aber:** Was macht der Zins!?

Zusammenspiel: Zins und Inflation


Zusammenhang: Zins und Sparteninflation?

Fazit: Entscheidend ist das Zusammenspiel zwischen Zins und Inflation!

Stochastische Inflationsmodellierung – Einjähriges Risiko

- Unter Solvency II ist der einjährige Risikohorizont gefordert, die bisherige Modellierung fokussierte jedoch auf das ultimative Risiko.
- Wie kann ein "Re-Reserving" Ansatz für die Inflation aussehen?
- Mögliche Lösung: Implementierung des "Inflationsprozesses" als "Aktuar in der Box" Methode.

Inhalt

Einleitung Risiken in der Schaden-/Unfallversicherung Inflationsrisiko Roadmap Inflationsrisiko Inflationserwartung Stochastische Inflationsmodellierung **Fazit**

Fazit

- Inflation im Schaden-/Unfallbereich ist spannend!
- Inflation kann "teuer werden"!
- Inflation als Risiko darf nicht vergessen werden!
- Einrichtung eines Inflationsprozesses, damit sie nicht zum Problem wird.

Vielen Dank für Ihre Aufmerksamkeit!