

Neue Entwicklungen Dr. Guido Grützner qx-Club Köln, 6. Januar 2009

- Angebot und Nachfrage bei Langlebigkeitsrisiko
- Der Longevity-Swap
- Projektionsmethoden für Langlebigkeit
- Ausblick auf zukünftige Entwicklungen

Die Angebotsseite

- UK: Grosse Bedeutung der Pensionszusagen mit Leistungsprimat
 - Verpflichtungen zunehmend belastend für die Betriebe
 - Die meisten dieser Pensionswerke sind für den Neuzugang geschlossen

 - Diesbezügliche Transaktionen haben deutlich zugenommen¹⁾

Vor 2007 p.A.	2007	2008		
£1-2Mrd	£3Mrd	> £6Mrd		

(£1 = €1.04) 1) Quelle: Guy Carpenter

Die Angebotsseite

- Transaktionen zwischen Versicheren in 2007 und 2008
 - Canada Life übernahm die Bestände an fälligen Renten von Standard Life und Equitable Life (Gesamtvolumen über £11Mrd)
 - Swiss Re übernahm bzw. rückversicherte Bestände verschiedener Gesellschaften (Gesamtvolumen über £7Mrd)
- Gründe für die abgebenden Gesellschaften:
 - Kapitalentlastung,
 - Verringerung des Langlebigkeits-Exposure
- Annahmen und Reservierungsgrundlagen zunehmend im Fokus der Aufsicht

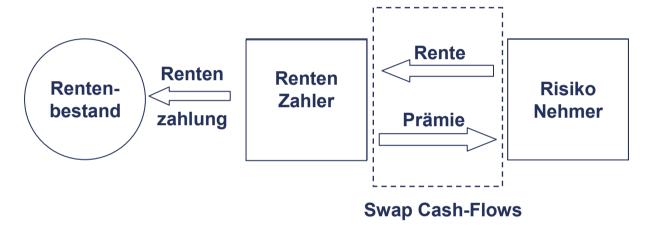
(£1 = €1.04)

Risikotransfer und Kapital

- Rentenportfolios erzeugen hohe Kapitalanforderungen
 - Art, Menge und Kosten von Kapital sind entscheidende Kriterien für die Konkurrenzfähigkeit
- Quellen von Kapital
 - Direkte: Eigenkapital, zulässige Formen von Fremdkapital (Hybrid)
 - Kapitalsurrogat durch Risikotransfer: Rückversicherung, Verbriefung
- Aber Risikotransfer kann nicht nur Kapital ersetzen sondern auch die Effizienz erhöhen
 - Der Empfänger des Risikos kann niedrigere Kapitalanforderungen haben
 - Im Portfolio des Empfängers kann das Risiko besser diversifiziert sein.
- Langlebigkeitsrisiko ist dabei grundsätzlich genauso einzubeziehen wie z.B. Investment- oder Sterblichkeitsrisiko

Die Nachfrage nach Langlebigkeitsrisiko

- Prinzip: Risiko halten und dafür eine Prämie vereinnahmen
- Grundsätzliche Vorteile einer Investition in Langlebigkeitsrisiko
 - Unabhängige Asset Klasse: Diversifiziert mit allen Arten von Marktrisiko
 - Risiko entwickelt sich langsam also keine Überraschungen
 - Neues Risiko daher potentielle "novelty-premium"
- Wer sind Investoren?
 - Rückversicherer, Versicherer
 - Hedge-Fonds, Pensionsfonds
 - Private Equity
- Was macht ein Investment attraktiv?
 - Rendite/Diversifikation
 - Liquidität
 - Transparenz und Fairness der Transaktionen



- Angebot und Nachfrage bei Langlebigkeitsrisiko
- Der Longevity-Swap
- Projektionsmethoden für Langlebigkeit
- Ausblick auf zukünftige Entwicklungen

Instrument: Longevity-Swap

Ein Longevity-Swap transferiert das Langlebigkeitsrisiko eines geschlossenen Rentenbestands

- Cash Flows eines Longevity-Swap
 - Rente: Variabel, Höhe hängt ab von Zahl der tatsächlich Überlebenden
 - Prämie: Fix, jede Rate ist fest vorab vereinbart
 - Prämie ist Best Estimate der Rentenzahlung + Risikoprämie
- Kein Transfer von Assets
- Kann Rückversicherung oder Kapitalmarktinstrument sein

Praktische Aspekte eines Longevity-Swap

- Netting der Cash-Flows
- Intermediäre
- Monatliche Bewertung
- Stellung von Sicherheiten
 - Begrenzung des Ausfallrisikos
 - Hebelt Rendite auf das eingesetzte Kapital
- Liquidität
 - Illiquidität ist unattraktiv, denn es erhöht das Risiko und somit den Preis
 - Gibt es einen Market-Maker? Stellt er Kurse für den Swap?
- Operationale Aspekte
 - Wer berechnet die Rentenzahlung? Was tun bei EDV-Fehlern?
 - Gibt es Möglichkeiten zur Prüfung oder Berichtspflichten?

Beispiele für Transaktionen mit Longevity-Swaps

- Swiss Re und Friends Provident¹⁾ (April 2007)
 - Swiss Re: Floating Payer (nimmt Risiko)
 - Friends Provident: Fixed Payer (gibt Risiko ab)
 - Volumen £1.7Mrd.
 - Rückversicherung
- Canada Life und JP.Morgan²⁾ (Oktober 2008)
 - JP.Morgan: Floating Payer (nimmt Risiko)
 - Canada Life: Fixed Payer (gibt Risiko ab)
 - Volumen £500m
 - Laufzeit 40 Jahre

) Quelle: siehe [4]

2) Quelle: Life&Pensions Okt 2008

Portfolio vs. Indexbasierte Swaps

- Die Cash-Flows des vorgestellten Swap basieren auf einem konkreten und ganz bestimmten Rentenportefeuille
- Dies hat diverse Nachteile
 - Asymmetrische Information: Der Eine weiss alles über seinen Bestand, der andere nur was ihm gesagt wurde
 - Moral Hazard z.B. beim Lebensnachweis
 - Problematische Teilportfolien: Vereinzelte Spitzenrenten, Inflationsindizierte Rentenanpassungen
 - Jeder Swap ist anders also keine Standardisierung somit wenig Liquidität
- Alternative: Indexbasierter Swap
 - basiert nicht auf einem realen sondern auf einem Musterbestand für den die Sterblichkeit aus einem Sterblichkeits-Index abgeleitet wird
 - Ein Sterblichkeits-Index ist einfach eine regelmässig aktualisierte und fortgeschriebene Sterbetafel

Kriterien für Sterblichkeitsindizes

Qualitätsmerkmale

- Der Index wird unabhängig erstellt
- Die Berechnungen sind objektiv nachvollziehbar
- Es sind ausreichend historische Zeitreihen verfügbar
- Der Index minimiert Basisrisiken

Basisrisiko

- Gefahr der Abweichung des Index vom abzusichernden Portfolio
- Beispiel: Versicherten- vs. Bevölkerungssterblichkeit
- Möglichkeiten der Umsetzung
 - Basierend auf Bevölkerungsdaten => relativ hohes Basisrisiko?
 - Basierend auf Industriedaten => Problem bei Datenbeschaffung und Unabhängigkeit?
 - Kompromissmöglichkeit: Bevölkerungsdaten + sozioökonomische Kriterien?

Beispiele von Sterblichkeitsindizes

- J.P.Morgan "Life metrics"
 - UK, US, D, NL
 - Nicht nur Index sondern ein Framework
 - Bieten Standard-Instrumente auf diesen Index an ("q-forwards")
 - Indexbasierte Transaktionen wurden durchgeführt (Lucida, 10 Jahre Index-Forward)
- Deutsche Börse "Xpect"
 - Deutschland
- Credit Suisse US: Letzte Aktualisierung der Web-Seite 2006
- Goldman-Sachs "QXX"
 - basiert auf einem underwritten Portfolio für US Life Settlement
 - Bieten Index-Swap an (long und short)

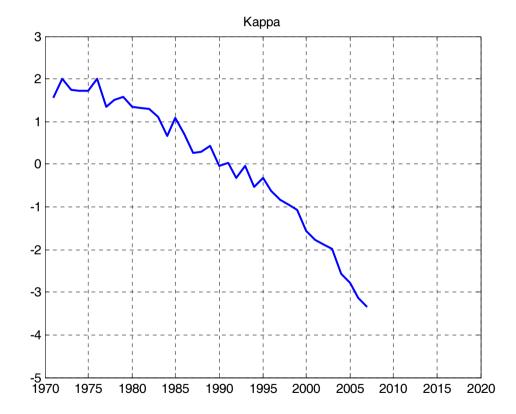
- Angebot und Nachfrage bei Langlebigkeitsrisiko
- Der Longevity-Swap
- Projektionsmethoden für Langlebigkeit
- Ausblick auf zukünftige Entwicklungen

Lee-Carter-artige Modelle: Einführung

- Originalmodell stammt von Lee und Carter aus dem Jahr 1992
 - Zielanwendung: Prognose von Bevölkerungssterblichkeiten
 - Heute das meistverwendete Verfahren zur Extrapolation
- Es gibt inzwischen unzählige Varianten¹⁾
 - Allen Lee-Carter Verfahren ist ein Zweischritt-Verfahren gemeinsam
 - Erstens: Fit eines parametrisierten Regressionsmodells
 - Zweitens: Extrapolation einer Zeitreihe
- Es erlaubt nicht nur eine Best Estimate Prognose sondern produziert stochastische Sterblichkeitsszenarien

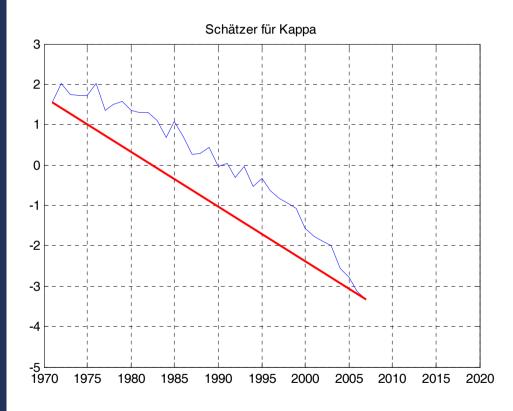
Steilkurs Lee-Carter: Fit des Modells

- Bezeichnungen: $x_1...x_n$ die Alter D(x,t) Tote des Alters x in Periode t $t_1...t_k$ die Perioden E(x,t) Bestand des Alters x in Periode t Log-Sterblichkeitsrate $\log(m(x,t)) = \log \frac{D(x,t)}{E(x,t)}$
- Definition des Modells


$$\log(m(x,t)) = \alpha_x + \beta_x \cdot \kappa_t + e_{x,t}$$
 $e_{x,t}$ Fehlerterm

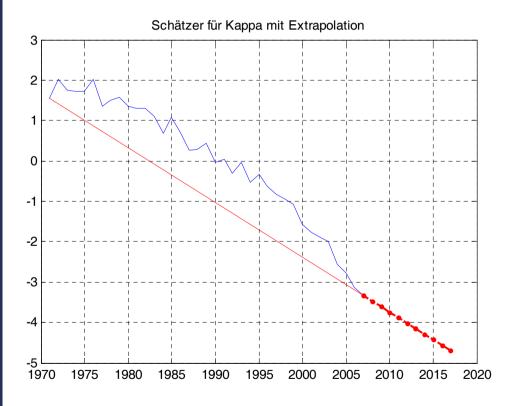
- Fit des Modells:
 - Finde Werte für alpha, beta und kappa so, dass Fehler minimal ist
 - Führt zu Maximum-Likelihood Fit bei gegebener Verteilungsannahme
- Was ist der Witz dabei?
 - Durch Regression werden Zeit- und Altersabhängigkeit separiert
 - Die gefitteten Werte $\kappa_1 \dots \kappa_k$ bilden eine Zeitreihe, die mit Standardverfahren untersucht und extrapoliert werden kann

Steilkurs Lee-Carter: Extrapolation der Zeitreihe


- Bevölkerungsdaten des Office for National Statistics
 - England&Wales, Männer, Altersbereich 80-89, Perioden 1971 2007

Steilkurs Lee-Carter: Extrapolation der Zeitreihe

- Bevölkerungsdaten des Office for National Statistics
 - England&Wales, Männer, Altersbereich 80-89, Perioden 1971 2007


Annahme an die Zeitreihe z.B.
 ARIMA(0,1,0) also Random Walk

$$\kappa_t = \kappa_{t-1} + \mathbf{d} + \varepsilon_t$$

Steilkurs Lee-Carter: Extrapolation der Zeitreihe

- Bevölkerungsdaten des Office for National Statistics
 - England&Wales, Männer, Altersbereich 80-89, Perioden 1971 2007

Annahme an die Zeitreihe z.B.
 ARIMA(0,1,0) also Random Walk

$$\kappa_t = \kappa_{t-1} + \mathbf{d} + \varepsilon_t$$

 Best estimate durch lineare Fortsetzung

$$s = \frac{\kappa_k - \kappa_1}{k - 1}$$
 und $\hat{\kappa}_{t+j} = \kappa_t + s \cdot j$

- Stochastische Szenarien durch Simulation des Random Walk
- Endgültige Sterblichkeiten durch Rückeinsetzen in das Modell

- Einfacher Regressionsansatz
 - Tools kann man im Internet herunterladen (siehe "Life metrics"-Seite)
 - Über Regression und Zeitreihenanalyse ist eine Menge bekannt
 - Leicht erweiterbar um neue Faktoren oder Modelle
- Objektives Verfahren
 - Kein "Actuarial Judgement"
- Stochastische Szenarien leicht erzeugbar
- Ermöglicht Bewertung und Pricing von allen Cash-Flows und Instrumenten die Langlebigkeits-exponiert sind.

Nachteile von Lee-Carter Modellen

- Einfacher Regressionsansatz
 - Mechanische Trend-Extrapolation der Vergangenheit
 - Keine neuen Trends, keine seltenen Ereignisse enthalten
 - Keine Möglichkeit Expertenwissen einzubringen
- Nur anwendbar wo ausreichend Daten vorhanden sind
 - Nicht möglich bei hohen Altern
 - Nicht möglich bei kleinen Beständen
- Rein phänomenologisch
 - Kein Bezug zu den zu Grunde liegenden biologischen und soziologischen Prozessen
 - Kann biologisch unplausible Sterblichkeiten erzeugen
- Grosse Unsicherheit über das korrekte Modell
 - Beliebige Variation der Möglichkeiten (siehe [3])
 - Kein klarer Sieger was die möglichen Modelle angeht

- Angebot und Nachfrage bei Langlebigkeitsrisiko
- Der Longevity-Swap
- Projektionsmethoden für Langlebigkeit
- Ausblick auf zukünftige Entwicklungen

Fazit zu Lee-Carter Modellen

- Statistische Modelle sind naiven Ansätzen vorzuziehen
- Stochastische Simulation stellt Erkenntnisfortschritt dar hinter den man nicht zurückfallen sollte
- Mechanischer Einsatz von Lee-Carter Modellen führt jedoch in die Irre
- Lee-Carter ist nicht Black-Scholes für Langlebigkeit aber ein echter Fortschritt!

Zukünftiger Transfer von Langlebigkeit?

- Nachfrager: Fördernd
 - Transparenz der Transaktionen
 - Liquidität
 - Know-How Aufbau
- Nachfrager: Hemmend
 - Scheu vor "exotischen" Risiken
 - Unfaire Deals
 - Unattraktive Renditen
 - Mangel an Kapital

- Anbieter: Fördernd
 - Konkurrenz um Kapital
 - Regulatorische Anerkennung
 - Umfassendes Wert- und Risikomanagement
- Anbieter: Hemmend
 - Geringe Aufmerksamkeit auf Langlebigkeitsrisiko
 - Zu hoher Preis des Transfers

Auswirkungen auf die aktuarielle Arbeit

- Ein aktiver(er) Markt für Langlebigkeit wird Auswirkungen auf klassische aktuarielle Arbeit haben
- Unwahrscheinlich
 - Seite in der Financial Times mit aktuellen Preisen für Langlebigkeitsrisiken
 - Sterblichkeit kalibriert auf aktuelle Marktdaten
- Wahrscheinlich
 - Seiten in Bloomberg für Swaps und Forwards auf Indexprodukte: Gibt es heute schon für den QXX-Index
 - Best-Practice Modelle für Projektion
 - Annahmen aus öffentlichen Transaktionen werden Benchmark zur Bewertung
- Langlebigkeit wird intern genauer modelliert und noch stärker Teil des umfassenden Risiko- und Kapitalmanagements

Dr. Guido Grützner Head of Life & Modelling +41 55 415 99 14

Secquaero Advisors AG Weinbergstrasse 10 CH-8807 Freienbach Switzerland

guido.gruetzner@secquaero.com
http://www.secquaero.com

Anhang

Quellen/Zitate/Web Seiten

- Lane Clark Peacock: "Accounting for pensions", "Pension Buyouts"
- Guy Carpenter: "Pensions and Longevity"
- 3. Andrew J.G. Cairns, David Blake et. al. "A quantitative comparison of stochastic mortality models using data from England & Wales and the United States"
- 4. David Blake, Andrew J.G. Cairns and Kevin Dowd, "The Birth of the Life Market"
- J.P.Morgan "Life metrics" Index und Toolbox (inclusive Lee-Carter Tool) http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
- 6. Deutsche Börse "Xpect" http://deutsche-boerse.com/dbag/dispatch/de/kir/gdb_navigation/market_data_analytics/65_xpect
- 7. Goldman Sachs "QXX" http://www.qxx-index.com/

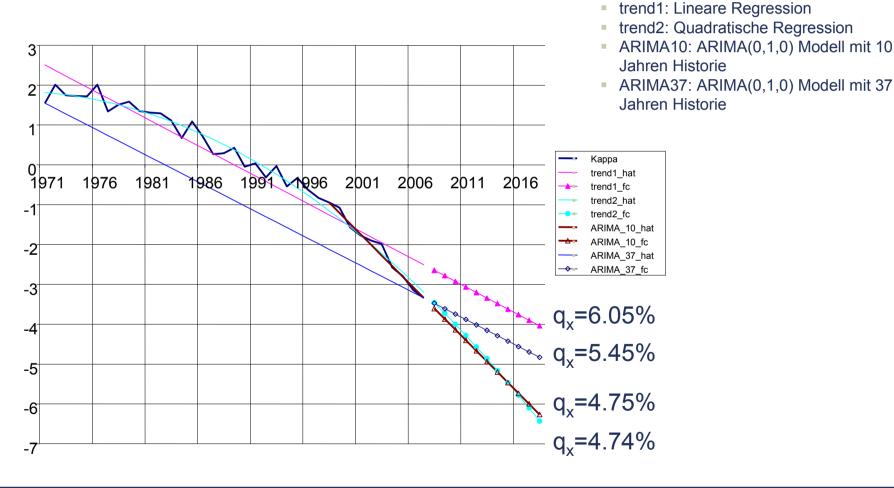
Weitere Lektüre zu Sterblichkeitsprojektionen

- Übersichtsartikel:Heather Booth and Leonie Tickle "Mortality modelling and forecasting: A review of methods"
- Natacha Brouhns, Michel Denuit Jeroen K. Vermunt: "A Poisson log-bilinear regression approach to the construction of projected lifetables"
- Working papers der CMI unter http://www.actuaries.org.uk/knowledge/cmi

Ein Zahlenbeispiel

- Bestand von 10000 Rentnern mit Rente 1, Sterblichkeit von 4%
- Risikomarge (RM) 50bp der Rentenzahlung
- Feste Prämie ist best estimate der Bestandsrente + Risikoprämie

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)
Monat	Bestand	BE Tote	Delta	Tats. Tote	BE Rente	Risiko- prämie	Tats. Rente	Saldo Floating Payer
		(B) * mtl. qx		(C) + (D)		RM * (F)	(B)	(F) + (G) - (H)
0	10000				10000	50	10000	50
1	9966	34	0	34	9966	50	9966	50
2	9933	34	-1	33	9932	50	9933	49
3	9903	34	-4	30	9898	50	9903	45
4	9868	34	2	36	9865	49	9868	46
5	9836	34	-2	32	9831	49	9836	44
6	9803	33	0	33	9798	49	9803	44


- BE: Best estimate
- Alle Zahlen sind rein illustrativ

30

Beispiel zum Modellrisiko bei Lee-Carter

Extrapolation von Kappa nach verschiedenen plausiblen Modellen

6.Januar 2009

Mechanik eines q-forward auf einen Index

- Ein q-forward ist eine Wette auf eine heute festgelegte zukünftige Sterblichkeit
- Kontraktdaten eines Beispiel
 - Nennwert: £100m
 - Index: JP Morgan Life Metrics index für England&Wales
 - Laufzeit: 10 Jahre
 - Strike-Sterblichkeit: z.B. $\hat{q}_{80}(2017) = 4\%$
- Auszahlung nach Veröffentlichung des Indexwertes für 2017
 - Differenz von vereinbarter zu tatsächlicher Sterblichkeit mal dem Nennwert: $(q_{80}(2017) \hat{q}_{80}(2017)) \cdot Nennwert$
 - Ist z.B. $q_{80}(2017) = 5\%$ so erzielt man einen Gewinn von £1m
 - Der Käufer macht Gewinn so wie die tatsächliche Sterblichkeit die Strike-Sterblichkeit übersteigt

Varianten und Möglichkeiten

- Durch einen q-forward sichert sich der Verkäufer bereits heute die zukünftige Sterblichkeit
- Die Strike-Sterblichkeit muss sich dabei nicht nur auf ein Alter beziehen
 - Strike-Sterblichkeit: z.B. mittlere Sterblichkeit der Alter 80-89
- Durch Kombination von q-forwards verschiedener Laufzeiten und Strike-Sterblichkeiten lassen sich auch komplexe Zahlungsströme absichern
- So kann der Verkäufer z.B. schon heute zukünftige Rentengarantien absichern